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Electromagnetic energy, absorption, and Casimir forces. II. Inhomogeneous dielectric media
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A general, exact formula is derived for the expectation value of the electromagnetic energy density of an
inhomogeneous absorbing and dispersive dielectric medium in thermal equilibrium, assuming that the medium
is well approximated as a continuum. From this formula we obtain the formal expression for the Casimir force
density. Unlike most previous approaches to Casimir effects in which absorption is either ignored or admitted
implicitly through the required analytic properties of the permittivity, we include dissipation explicitly via the
coupling of each dipole oscillator of the medium to a reservoir of harmonic oscillators. We obtain the energy
density and the Casimir force density as a consequence of the van der Waals interactions of the oscillators and

also from Poynting’s theorem.
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I. INTRODUCTION

Analyses of quantum fluctuations of the electromagnetic
field in dielectric media typically take a macroscopic approach
in which the field is quantized under the assumption that the
medium is characterized by an electric permittivity [1]. Much
of this work is restricted to fields at frequencies for which
absorption is negligible, and some of it assumes furthermore
that dispersion is negligible. An important exception is the
work of Huttner and Barnett [2], who allow for both absorption
and dispersion; as in virtually all work in this area, they treat
the (unexcited) atoms of a homogeneous dielectric medium [3]
as harmonic oscillators [4], and dissipation is accounted for
by coupling each of these oscillators to a “bath” of reservoir
oscillators. The atoms are also coupled to the electromagnetic
field, and the entire system of atoms, reservoirs, and field
oscillators is then diagonalized along the lines of Fano’s
method [4] to yield expressions for quantized electric and
magnetic fields.

In a less elegant approach one writes Heisenberg equations
of motion for the atom, reservoir, and field variables. The
effect on each atom of its coupling to its reservoir is to
introduce a damping force and a Langevin force, the latter
ensuring the preservation of canonical commutation relations.
The Langevin force on each atom results in a fluctuating
“noise polarization” of the type introduced in Rytov’s theory
of fluctuational electrodynamics [5], and used by Lifshitz [6]
in his theory of the van der Waals—Casimir force per unit
area between two dielectric half-spaces. The operator Maxwell
equations with this noise polarization yield expressions for
the quantized transverse fields having the same form as those
obtained by Huttner and Barnett [7,8].

One purpose of the present paper is to extend earlier work
[8,9], hereafter referred to as I, to the case of inhomogeneous
dielectric media. This leads to a formula for the total
energy density of a dispersive, dissipative, and inhomogeneous
dielectric medium in terms of the dyadic Green function G. We
derive the force density at finite temperature 7 associated with
spatial variations of the complex electric permittivity €(r,w)
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of the medium:

h o 2 ho
f(r) = _Wlm/() dww” coth <2kBT>Ve(r,a))
x Gii(r,r,w), (1

where G;; (r,r,w) is the sum of the three diagonal components
of the Fourier transform of the Green dyadic in the summation
convention for repeated indices used throughout this paper.
From Eq. (1) one obtains, for instance, the Lifshitz formula [6]
for the force per unit area between two semi-infinite dielectric
media separated by a distance d, as was shown in the early
work of Dzyaloshinskii ez al. [10] and Schwinger et al. [11],
and from that formula one obtains in various limits, as is
well known, the Casimir force between perfectly conducting
plates, the van der Waals interaction between two atoms, the
Casimir-Polder interaction between an atom and a conducting
plate, etc.

The main motivation for the present work is not just to
rederive the general force density (1) by different methods, but
rather to obtain it by allowing from the outset for absorption.
Derivations of the (T = 0) Lifshitz formula based on changes
in electromagnetic energy [12], following Casimir’s original
calculation [13], are based on the zero-point electromagnetic
energy » . jhw;/2, the sum being over all possible modes
of the field. The frequencies w; in such calculations are
first determined for the case of nondissipative media (real
permittivities), and dissipation is later accounted for by making
in effect an analytic continuation based on the requirement
from causality that the permittivity is analytic in the upper
half of the complex frequency plane. The question of how to
apply this approach by admitting dissipation from the start
is an old one in the theory of Casimir forces. Agarwal [14],
for instance, remarks that “if the damping of the dielectric
function is included, then the [method based on zero-point
energy] seems to fail. In presence of damping the normal-mode
frequencies are complex, and it is not clear what one should
sum over to obtain the interaction energy.” In Ref. [15],
similarly, it is noted that “it is not obvious how to extend
[the zero-point-energy approach] to the case of absorbing
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media, where the [permittivities] are complex.” Ginzburg [16]
observes that, “Apart from a general maxim that ‘victors should
not be judged’ one can justify the derivation of [the Lifshitz
formula] on the basis of [the assumption that a mode of
frequency w has zero-point energy iw/2] for absorbing media
as follows. Firstly, the permittivities [appearing in the Lifshitz
formula] are functions. Secondly, the function €¢(w) is always
real on the imaginary axis. The result obtained for transparent
media ... must therefore clearly be the same as the appreciably
more general one which is applicable to absorbing media.
However, this would hardly confirm such a conclusion unless
it had been obtained earlier without additional assumptions.
Both for this reason and also bearing in mind other related or
similar problems one must somehow consistently generalize
the expansion in eigenoscillations with frequencies w, ...
to absorbing media.” Ginzburg proceeds to introduce the
concept of (orthogonal) “auxiliary” field modes associated
with the immersion of the entire system “in some auxiliary
resonator with perfectly conducting walls. ... The frequency w
is considered to be a parameter, while the eigenfrequencies of
the resonator w, are determined from the homogeneous field
equations” corresponding to Maxwell’s equations without a
fluctuating polarization density.

There are arguably more direct ways of explaining the
success of calculations that “consider directly only transparent
media” and attribute Casimir forces to changes in zero-point
energy due to the presence of material media. A clue in this
direction is provided by the case of a homogeneous dielectric
medium: the zero-point energy has the same form regardless
of whether one allows “directly” for absorption [8].

In the following section we derive the Casimir free energy
and force density for a dispersive and absorbing, linear,
inhomogeneous dielectric medium based on an extension of
the classical formula

We = —3a(0)E*(r) )

for the change in energy when an electric field E of frequency
w induces an electric dipole moment o(w)E in a particle having
a real polarizability o(w). For an atom in a state characterized
by the polarizability a(w) this is just the quadratic Stark shift
of its energy level. The generalization needed to obtain the
Casimir free energy only requires allowance for a complex
polarizability and the effect on each dipole of the fields from
all the other dipoles. We explicitly include dissipation and
Langevin forces resulting from the coupling of the dipole
oscillators to their reservoirs and show that the force density
obtained in this way is equivalent to that obtained in the
seminal work of Dzyaloshinskii et al. [10] using diagrammatic
methods and subsequently by other authors by various other
techniques. In Sec. III we rederive, from Poynting’s theorem,
the expression for the energy density obtained in Sec. II
and show that it reduces to the result obtained in I in the
special case of a homogeneous medium in which the complex
permittivity has no spatial dependence. Section IV presents a
brief derivation of the Casimir force density for a dispersive
and dissipative dielectric based on the Maxwell stress tensor.
Our conclusions are briefly summarized and discussed further
in Sec. V. As in I we focus mainly on the case of zero
temperature. The extension to finite equilibrium temperatures
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is straightforward and so we simply summarize it in the
Appendix.

II. ENERGY AND FORCE DENSITY FROM
COUPLED DIPOLES

A. Interaction energy in terms of free-space Green dyadic

We start by considering a collection of A/ electric dipoles
in free space. The nth dipole (“atom”) has associated with it
an electric dipole moment operator p,, = eX, and a resonance
frequency wy, and it is coupled to a reservoir that results in a
damping rate y and a Langevin force F,. It is also coupled to
the total electric field E(r,, ) at its position r,,. The Heisenberg
equation of motion for the electron coordinate operator for the
nth atom is derived in I [Eq. (51)] [17]:

. . 1 . e A
Xni + VEni + O3k = —Funi(®) + —Eirn). )

The first subscript (n) on % identifies the nth atom, while
the second subscript (i) denotes the ith Cartesian component
of X,. As in I we use a circumflex to denote quantum-
mechanical operators, and we define Fourier-transformed
operators p,;(w) = eX,;(w), etc., by writing

puilt) = / dolpu(@)e™ ™ + pu(—-)e™], @)
0

Fro(t) = / dolFpui(@)e ™ + Fpu(—w)e®],  (5)
0

Ei(r,t) = / dolEi(r,0)e™ ™ + Ei(r, — 0)e''], (6)
0

with p,;(—w) = ﬁii(a)), etc., which follows from the require-
ment that the operators p, F 1, and E be Hermitian. From
Eq. 3),

2 2 . o € 2 e .
(05 — @ —iyo]pui(®) = = Fru(0) + —Ei(r,,0). (7)
m m
The electric field in Eq. (7) is the sum of the source-free

(“vacuum”) field EOi (r,,w) at r, and the fields from all the
dipole sources:

A~ A~ w? ad 0 R
Ei(tn,0) = Eoi(r,0) + — 0 Gyt tn,@)pnj (@), ()

m=1

where G(r,r’,w) is the Fourier transform of the (retarded)
free-space dyadic Green function satisfying

2
V XV x GUrr) — G0 r) = dx 8 - ). (9)
C

Equation (7) is therefore

2 2 . N e A 62 A
[wf — @ — iy o] pui(@) = — Fri(®) + — Eoi(ry,0)
m m
&2 w? N
s D Gl T ) P (@),
m=1
(10)
or, in matrix form,
e &2
p(w) = A(w) | —Fr(w) + —Ep(0) |, (1m)
m m
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where p(w), Fr(w), and E¢(w) are 3N -dimensional column
vectors (N dipoles, 3 Cartesian coordinates) and the 3N x 3N
matrix

|2 2. e? -
Alw) = |wy — o —iyw — —Gy , (12)
m

where w2
Go(r.r' ,w) = = Gr.r',w). (13)
C

We are interested in the change in energy involved in
bringing the A dipoles from a configuration where they are
infinitely far apart and not interacting to one where they are
separated by finite distances and interacting with themselves
as well as with the source-free, fluctuating electric field.
Consider first the simple example of a single dipole with
real polarizability «(w). According to the Hellmann-Feynman
theorem [18] the change in energy when the dipole is brought
from infinity (E = 0) to a point r where the electric field of
frequency w is E is

1 1
W = _f d_)‘@ ‘El) = —/ d—)hoz(w,)»)(E(l') -E(r),
0 A 0o A
(14)

where the coupling constant in the integrand, in this case the
electric charge, is taken to be Le. Since o(w) is proportional
to €, i.e., a(w,1) = Aa(w), Eq. (14) simply generalizes the
classical formula (2). The relation [19] [see also Eq. (87)
below] between the vacuum expectation value of the free-field
operator Eo(r,w) - Eg(r,a)’) and the Green dyadic Gy,

. R h
(Bo(r.w) - Bi(r,0)) = —ImTr Go(r,r,w)8(w — o),  (15)
T
where Tr is the 3 x 3 trace, suggests that
hofltda [
W=—— — dwa(w,)ImTr Go(r,r,w) (16)
wJo A Jo

when the field is the source-free electric field including all
frequencies. But of course the polarizability cannot be real
at all frequencies, and the correct form of W is not Eq. (16)
but [20]

h Lan [
W = ——Im/ —/ doTra(w, )Go(r,r,w). (17)
7T o A Jo

Thus if we again use o(w,A) = A2a(w), we recover the
expression

i 00
W=——1Im f dwTra(w)Go(r,r,w) (18)
2 0

obtained by other methods [20].

For our collection of dipoles we identify from Eq. (11) the
polarizability matrix (e?/m)A(w) and define the expectation
value of the interaction energy as [21]

00 1
A
&= —Elm/ da)Tr/ d—
T 0 0 A

A2(e*/m)Gy
Wi — @® —iyw — 22(e2/m)Gy
oo
= —1Im doTrn[1 — agGol, 19)
2 0
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where we define the polarizability

e?/m

ap(w) = (20)

2 o
wy— 0 —iyw
(Spatial coordinates r,,r,, are treated here along with Carte-
sian components i, j as matrix indices.)

The integrand in Eq. (19) can be expanded in powers of «:

h o 1,
E=——Im doTr|agGo + za5GoGo
27[ 0 2
1
+ §a(3)GOGOGO + - ] 1)

The first term in brackets is part of a single-particle self-energy,
while the terms that are nondiagonal in the space coordinates
r,,r, correspond successively to two-body, three-body, etc.,
van der Waals interactions [10,14,22,23]. Thus, for instance,
the second term in brackets, written out explicitly using

N
1 1
Tr [EagGoGo} =5 Z a3 (@)Goij (Cp, T, @)
m,n=1

X GOji(rm»rn»a))a (22)

is found to be just the sum of pairwise van der Waals interaction
energies of the A/ atoms when terms with m = n are excluded
(these correspond to self-energies). In the model in which the
atoms form a continuum we replace the summation in Eq. (22)
by

f &r / Er NENE)2(@)Goiy (rF ) Goji (F1,0)
|:€ -1

=Tr
47

where N (r) is the number of atoms per unit volume at r. Using
the formula

2
] [Gol?, (23)

Ne?/m
€ =1+4nNapy(w) =14+ 5—F—— (24
Wy —w* —iyw

for the permittivity, we similarly replace Eq. (21) by
h o S 1Te—1
5:——Im/ da)TrX:—[6
2 0 —n 4

and define the energy density

} [Gol"  (25)

n *° e—1
u(r) = —ImTr | dwln|1— Go (26)
2 0 4

in the continuum approximation [24]. We have presumed in
deriving this expression that the polarizability oy does not
depend on r, so that the dependence of the permittivity on
r stems solely from the r dependence of the number density
N(r). However, it is straightforward to rederive Eq. (26) with
an r-dependent o, so that different parts of the medium
can have different resonance frequencies as well as different
number densities.
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B. Energy density in terms of the full Green dyadic

G satisfies Eq. (9), while the Green dyadic G in the case
of a medium with complex permittivity €(r,w) satisfies

2

V xV xG(r,r) — —G(rr)—4n8 r—-r), @70

together with appropriate boundary conditions. Therefore,
0, @ 0 _ @
VxVxXx(G-G6G)—=(G-G6)=—le—-1]G, (28)
c c

and the solution of this equation obtained using the Green
function G° implies the Born-Dyson-type relation

0 0 a)ze 1
G=G"+G 2 iy G, 29)

ie.,
2

Gij(r,r,w) = G?j(r,r,w)Jr w—Z/dSF’G?k(r,r’,w)
C

e(r,w)—1
X —_—
4
From Egs. (26) and (29) it follows that

Gui(r',r,w). (30)

w0 = —2-tm fo T doTrni GG @D

which is the well-known “trace-log formula” [25]. The free-
space Green dyadic G is independent of the atoms or the
properties of the medium formed by them. The term In[(G%)~']
in the above expression therefore subtracts from the total Green
function G the “bulk” contribution G°, and therefore u(r)
contains only the “scattering” part of the Green function, which
comprises the interaction between the atoms.

We can express this energy in a different form by partial
integration as in Ref. [26]. Omitting the “bulk” contribution in
Eq. 31),

h o B]
u(r) = —ImTr doow—InG
2 0 ow
h o0
= —ImTr / dooG~'G', (32)
27 0

where we use a prime to denote differentiation with respect to
w. Now from Eq. (27),

2 2

V XV x8G — 2e8G = 28¢G, (33)
C C
and therefore, formally,
2
56 = — 2 8¢GG, (34)
47 2

where of course there is an integration over space implied on
the right-hand side. Similarly

2w
—eG + —e 'G, (35)

/ a)z /
VxVxG — —ZeG
c
and therefore

) l o /
G' = —Z2¢ + we'lGG. (36)
47 c?
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Using this result in Eq. (32), we obtain

u(r) = o hz 2ImTr / dww’[26(r,w) + we' (r,w)]
x G(r,r,w). 37

This is our general expression for the energy density. We
discuss it further and give an alternative derivation of it in
Sec. III.

Two points concerning the derivation of Eq. (37) are worth
noting here. First, we have seen that the energy density (26) is
associated with many-body van der Waals interactions and
therefore vanishes when the polarizability og(w) — 0 and
the permittivity €(w) — 1 for all frequencies, as can also
be seen from Eq. (31). However, when €(w) — 1 the energy
density (37) that was derived from Eq. (26) becomes

h o0
u(r) = Tr / dwo’ImG (r,r,w)

oo 1 C()2
_> /0 dw(iha)) <—zn203)’ (38)

where we have used the fact that TrImGO(r,r,w) = 2w/c.
Thus we recover the correct vacuum electromagnetic energy
density in the limit €(w) — 1. The reason for this is that
in obtaining the trace-log formula (32) from Eq. (31) we
have effectively added the part of the energy density needed
to make u(r) have the correct (nonvanishing) vacuum-field
energy density when e€(w) — 1.

The second point is that there are other contributions to
the total energy density that are not included in Eq. (37) and
that do not contribute to the Casimir force density. Of course
this is not surprising, as in deriving Eq. (37) we considered
only the energy involved in the induction of dipole moments
by the electric field and in the interaction of these dipoles.
Thus our derivation does not account for the constant energy
(density) absorption rate of a medium with permittivity €(r,w);
this absorption rate R,y has exactly the form expected from
classical electromagnetic theory:

1 o0 N .
Rups = —Tr / dwwe,(r,0)(E(r.0) - B (r.o),
47'[ 0

h

o0
=1 2Tr/ dww’e;(r,0)ImG(r,r,w), (39)
e

where in the second line we have used the generalization of
Eq. (15) given in Eq. (87) below. This flow of power into the
atoms’ reservoirs is of course exactly canceled by the power
lost by the field, so there is no net change in total energy
density. In the calculation using the Poynting theorem in the
following section, all contributions to the total energy density
are included, and this cancellation is seen explicitly.

In addition to the fluctuating dipoles induced by the
electromagnetic field, whose interaction is responsible for
van der Waals (Casimir) forces, there are fluctuating dipoles
due to the Langevin noise forces acting on the individual
atoms. These “noise” dipole moments do not result in forces
among the atoms, since the Langevin forces acting on different
atoms, unlike the electric fields inducing dipole moments in
different atoms, have no spatial correlations. In the presence
of the fluctuating electric field they do, however, contribute
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[K = 47 P ice is the noise polarization defined in Eq. (68) of I]
1

A

E Dmse = <E Pnoise>

:—Re/ o [ o

= —Re/ da)/ do' (K(r,w) - Bl (r,0))e @

=—Re/ da)/ da)

X Kj(r,a) Nyye i@

h

- o / 00 €1 ()G ris(r.r,0) (40)
0

uy(r)

N =

—i(w—a')t

noise(r»w) . ET (r, (,(),)>€

G,j(r r,o) (K (r,w)

to the total energy density. This is a single-particle
self-energy resulting in effect from the interaction of the
Langevin-force-induced dipole moment of each particle with
the part of the electric field due to this same dipole moment.
As such it has the effect in our model of determining in part
the equilibrium positions of the particles within the medium
but does not contribute to interparticle interactions.

C. Force density

The force density can be obtained from either expres-
sion (26) or (37) for the energy density. Consider first Eq. (26).
The fact that G° is independent of any properties of the medium
means that a variation §€ of £ due to a deformation of the
medium depends only on the variation §¢ of € that accompanies
the deformation [10]. Therefore

f 5 ERRT
5€ = ——"Im / doTro% Z € [Go]"*!
2 0 4 = 4

h o0
= ——Im/ dw/d3r5e(r,w) G (r,r,w)
87'[2 0

+/d3r’Gol-k(r,rﬁw) [%} Gowi (r',r,0)
+/d3r’/d3r”G0,~k(r,r',a)) [M]
4
X Gop(r' 1", @) |:e(r”,4+)—l] Gopi(r",r,w)
+--- } 41)

It follows from Eq. (30) that the quantity in curly brackets is
just the trace of the Green dyadic G(r,r,w), and consequently
the variation in the energy density is

Su(r) = — Im / oodwwere(r,w)Tr G(r,r,0). (42)
0

h
8m2c?

Following Dzyaloshinskii et al. [10], we consider an
infinitesimal local displacement R(r) of the medium. This
transport of the medium implies a variation in € at r such
that €(r,w) + de(r,w) = €(r — R,w), or de(r,w) = —Ve -R.
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Therefore

h o0
Su(r) = —Wlm/ dow’[—Ve - R]Tr G(r,r,w)
aTeC 0

—/d3r f(r) - R, (43)

where the Casimir force density f(r) obtained in this way is
given by the 7' = 0 expression of Eq. (1):

f) = —2— 2Im / dww?Ve(r,0)Gi(r,r,w), (44)

where we used that Tr G = Gy;. This is equivalent to the result
of Dzyaloshinskii e al. obtained by summing a sequence of
diagrams, each successive one including a number n of closed
loops corresponding to n-body van der Waals interaction ener-
gies. As these authors discuss, Eq. (1) does not in general give
the total force density, as one must account for the variation
in € due to changes in density as well as to the displacements
considered in obtaining Eq. (43). Ignoring the former amounts
to assuming displacements R such that V - R = 0. For the
calculation of forces on bodies embedded in uniform fluids in
mechanical equilibrium, however, the additional contribution
to the total force resulting from density variations must be
balanced by pressure arising from nonelectromagnetic forces,
and may in effect be omitted [10]. It must also be noted that
G(r,r,w) diverges unless spatial frequencies are cut off at some
large value on the order of 1/(interatomic spacing). However,
again as discussed by Dzyaloshinskii et al., the contributions
from high spatial frequencies are the same at each point r
for an inhomogeneous medium as for a homogeneous medium
having the same value of € at r as the inhomogeneous medium.
The divergent Green dyadic appearing in Eq. (1) should
therefore be replaced by [10]

G(r,r,w) — E(r,r,a)), 45)

where G is the Green function of a homogeneous medium with
the same value of ¢ at r as the inhomogeneous medium under
consideration [27]. This subtraction of the singular G(r,r,w)
is discussed further below.

Consider now the derivation of the force density from the
energy density as expressed by Eq. (37). A variation € in the
permittivity results in a variation

Su(r) = Im/ dww® {[28€ + wd€'1G;;

+ [26 + we'18Gj;) (46)
in u(r). From Eqs. (34) and (36),
[28€ + wd€'1G + [2€ + we'18G
1 2
— [28€ + wSe'1G + [2€ + we'| — = 8¢ GG
47 c?
= [28€ + w8€']G + wdeG’
d
= 266G + wo—[6€G]. “mn
ow
Partial integration of Eq. (46) then gives

Su(r) = — Im / dww?*Se(r,w)G,i(r,r,w), (48)
0

h
8m2c?
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implying again that the 7 =0 expression for the force
density (1) when € varies with position. Essentially the same
calculation was presented by Milton et al. [26] under the
assumption that ¢; = 0.

An “inhomogeneous medium” as defined here includes the
important case of spatially separated homogeneous bodies,
as in the case of the two parallel dielectric slabs treated by
Lifshitz [6]. Except for such simple geometries, the calculation
of Casimir forces based on (1)—which amounts in effect to the
calculation of the (classical) dyadic Green function—must be
performed numerically. Our interest here, as discussed in the
Introduction, is only in the general question regarding what
effect dissipation has on the derivation of Eq. (1) by different
methods, especially in derivations based on energy variations.

D. Remarks relating to early work

In their diagrammatic approach Dzyaloshinskii et al.
obtained the following expression for the force density (in
addition to the aforementioned contribution that arises from
displacements R with V - R # 0):

kpT &
f(r) = —4;7 ng(:)wﬁG,-,-(r,r,iw,,)Ve(r,iw,,). (49)

Here the (Matsubara) frequencies w, = 2wnkgT /A and the
prime in the summation sign means that a factor 1/2 multiplies
the n = 0 term. For T — 0 the sum can be replaced by an
integral, and Eq. (49) becomes

f(r) = —# /OOd§§2Ve(r,i§)G“(r,r,i§). (50)
0

G, like €, is analytic in the upper half of the complex frequency
plane. Using this fact, it is easy to show that Eq. (50) is
equivalent to Eq. (1). The appearance of the permittivity at
imaginary frequencies in the work of Dzyaloshinskii et al.
can be traced to an analytic continuation of a Green function
obtained with € evaluated at real frequencies to one in which €
is evaluated at imaginary frequencies. Thus, consistent with
the remarks in the Introduction about € being a function
that is real-valued on the imaginary axis, the validity of the
derived force density for dissipative media rests on the formal
analytic properties of €. The same is true of the analysis of
Schwinger et al. [11]. Our more “brute-force” approach does
not explicitly invoke these properties; we calculate the Casimir
free energy by exhibiting explicitly, albeit with a simple model,
the dissipative character of the dielectric.

Mahan [22] considered essentially Eq. (3) without damping
and Langevin forces and without coupling to the fluc-
tuating source-free field. The eigenfrequencies €2; of the
coupled-oscillator system are obtained by writing X, =
X, (£2) exp(—i2t) and then applying the argument theorem to
obtain the difference in the zero-point energies (/2N
between a given configuration and that when all the interatomic
distances are infinite. Renne [23] noted inconsistencies in this
approach in the case of retarded interactions and proceeded
in a similar fashion by solving for the eigenfrequencies of the
coupled system of dipole oscillators and field oscillators.

Renne includes radiative reaction, as does Agarwal [14]
in a general response-function formulation, and consequently
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the polarizabilities of the material oscillators are complex;
radiative reaction makes the only contribution to the imaginary
part of the polarizability in their work. However, this imaginary
part is connected not with dissipation of field energy as such
but with (energy-conserving) Rayleigh scattering of radiation,
consistent with the optical theorem. To compare with the result
of Renne, for instance, for the interaction energy of a system of
ground-state harmonic dipole oscillators, we use the identity
Trln X = IndetX [28] to write Eq. (19) as

oo

&= iIm dwndet[1 — ag(w)Go(w)]

2 0

i /oodg Indet[1 — ao(i§)Go(i&)], (51)
2w 0

which is equivalent to Eq. (18) of Renne [23]. In his derivation,
however, the damping rate y in the definition (20) of «g(w) is
obtained from an approximation to the radiative reaction field
in which the third derivation with respect to time of a dipole
moment is replaced by minus the square of an oscillation
frequency times a first derivative with respect to time, and in
this approximation the imaginary part of «y(w) provides in
effect for a collisional- or Ohmic-type dissipation rather than
for elastic scattering of radiation. (Without this approximation
the permittivity in Renne’s approach would not be analytic
in the upper half of the complex frequency plane, and it
would preclude the analytic continuation of a Green function
that was alluded to earlier.) In our approach y is obtained,
without approximation, from the coupling of each oscillator
to its reservoir, and €(w) [Eq. (24)] has no contribution from
radiative reaction. Dissipation of field energy is due, as usual,
simply to the transfer of energy from the field to the atoms and
the subsequent transfer of this energy to the reservoirs rather
than back to the field.

Radiative reaction is of course naturally included in our
approach; it is associated with the term G?j (r,,r,,w) in
Eq. (10) and with a renormalizable self-energy. The complex
permittivity (24) appearing in Eq. (27) for the Green function,
however, has no contribution from radiative reaction. This is
related to the implicit assumption in our continuum model
that there are no density fluctuations and therefore that the
extinction coefficient due to Rayleigh scattering vanishes [29].
In the case of two spatially separated homogeneous bodies,
for example, the only “scattering” that occurs is in the form of
reflection and refraction at boundaries.

III. MACROSCOPIC QED APPROACH TO THE ENERGY
DENSITY OF A DISSIPATIVE DIELECTRIC MEDIUM

In T we derived expressions for quantized electric and
magnetic fields and for the energy density in a dispersive and
absorbing, homogeneous dielectric medium. We now extend
these considerations to inhomogeneous media.

A. Poynting’s theorem

As in I we base our approach essentially on the macro-
scopic, Heisenberg-picture Maxwell equations and the Poynt-
ing theorem that follows from them. In the conventional
notation Poynting’s theorem for the symmetrized Poynting
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vector operator S= (c/ 87)[E x H — H x E] takes the form
. 1 ) ) B) ) A
?g(S)-ndaz—— E-—+—-
S v ot ot
~ 9B OB
_ H — 4+ .
8t Jy ot ot

0
=— | —U@.ndr,
/Vaz (r.nd’r

or, after a time integration,

f d:’f(S) -nda = —/ [U(r,t) — U(r,—o0)] d°r,
0 S \%4

(53)

where the expectation values refer to the ground state of the
system consisting of the field, the atoms, and the reservoir
oscillators responsible for the damping and Langevin forces
acting on the atoms, and also

| L U] ) B) ) A
Ur,t)—Ur,—o0) = — [ dt'{E-— + —-E
T

. ar ot
+H- OB + a8 ‘H (54)
ar’ ot ’

The left-hand side of Eq. (52) is the electromagnetic energy
flux through a surface S enclosing the volume V, meaning that
U(r,t) — U(r, — oo) is the energy density variation associated
with this flux (through S) between t' = —oco and ¢ =1t.
The latter is immediately seen to vanish for static systems
in equilibrium, but this can be circumvented by imagining
that we bring our system adiabatically from some reference
configuration [30]. We can then use the approximation that
the system is stationary at both ' = —oo and ¢’ =, but as
those instants are now characterized by different configura-
tions, the subtraction in Eq. (54) does not vanish anymore. In
addition, by choosing our reference configuration as one where
the different parts of the system do not interact, we can just
subtract U(r, — co) from Eq. (54) (as an irrelevant constant)
and write

1 (" Jo 9D 9D . . 9B 9B .
Ur)=— [ da'lb-—=+= E+H.-— “H).
) 871/00< o Yo PP et >

(55)

We remark that the energy density U(r,?), being a quantity
that is associated with the electromagnetic energy flux, is not
necessarily the same as the energy density u(r) of the previous
section; in particular, as we shall see, it contains the energy of
the bath field. In terms of the Fourier components of the fields
[cf. Eq. (6)], the total equilibrium energy density is

1 (> o e
Ur,t) = 8—/ da)f do’
T J-x —00

W to
x [ (E(r,w) - D(r,0)) + o(D(r,0) - E(r,o))
+o' (H(r,0) - B(r,0)) + oB(r,0) - H(r,o))].
(56)

—i(w +w)t
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For zero temperature we can write this in terms of strictly
positive frequencies as follows:
Ur,t) = Ue(r,t) + Up(r,1), (57)

where

U(rt)——/ dw/ do'

[0 (E(r,w) - Di(r,0)) — oD,0) - Bl (r,0))]
(58)

l(w’—w)t

o —w

and, for the nonmagnetic media under consideration,

Up(r,t) = % /0 oodw(lfl(r,w)-ﬁ*(r,w)). (59)

We have used the fact that E(r, —w) = ]:]T(r,a)), etc., and, for
w,0 >0,

(E(r,0) - D(r,0)) = Ef(r,0) - Di(r,0/)) =0, (60)

and likewise for the corresponding bilinear magnetic field
products. We have also made use of the fact that, for
zero temperature, only the positive-frequency field operators
Ei(r,w), etc., produce a nonvanishing result when acting
on the initial state of the system, i.e., they act as creation
operators, whereas the positive-frequency operators E(r,w)
are annihilation operators and yield zero when acting on the
initial zero-temperature state.

B. Electric and magnetic fields

The electric field operator l:l(r,a)) satisfies
w? . w?*
|:V x V x ——ze(r,w)]E(r,w) = —ZK(r,a)). 61)
c c

The solution for E(r,) in the medium can be written in terms
of the Green dyadic satisfying Eq. (27):

2
Ei(r,w) = 4‘“ . /d3r/Gij(r,r’,w)kj(r’,w), (62)
T C
while for ﬁ(r,w) we have
D(r,w) = e(r,0)E(r,0) + K(r,o). (63)

Based on the harmonic-oscillator reservoir model, it is shown
in I, for instance, that the noise polarization K has the thermal
equilibrium properties

(Ki(r.w)) = (K] (r.0) =0,
(Ri(r.0)R;(r'.) = (K] (r.o)R|(F.0) =0 “
and .
(Rl(r.o)K;(r ) = 4he (0)8;;8(w — )8 (r —1')
: (65)

x eho/ksT _ 1’
(Ie;(r,a))le;(r’,a)/)) = dhe;()8;;8(w — )8 (r — 1)

1
x [—ehw/m —+ 1] (66)
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The expression for I:I(r,Aa)) in the megium follows from the
Maxwell equation V x E = —(1/c)oH/dt:

f(r.0) = —ifv x B(r,w)

= —l—/d’r’[v x G(r,r', o) - Kr',w). (67)
w

C. Total energy density

Consider first the energy density U,. The expression (63)
for D(r,w) results in two contributions to U,. The contribution
from €(r,w)E(r,w) is

1 00 oo ei(w’fw)t
UM(r,t) = —Re / dw / do'
8 0 0 o —w

x [0 €* (@) — we(w)|(E(r,0) - Ef(r,0))

oy
et(a) w)t

h o0 o0
— ReTr / dow? / do'
= 822 0 0 o —w

x [0 €*(w") — we(w)]G(r,r,w)8(w — &), (68)

where to simplify notation we have suppressed the r depen-
dence of €. We have employed the identity [19] [see also
Eq. (87) below]
. . , h o ,
(E(rvw) : E(r’w )) = __2Tr Gl(r’r’w)a(w —w )7 (69)
Tc
with G; denoting the imaginary part of the Green dyadic. In
order to evaluate Eq. (68) we write the permittivity in terms
of its real and imaginary parts, €(w) = eg(w) + i€;(w). In the
term containing € g(w) we use
) — d
lim L)~ fl@) _ f(w)’ (70)

W' —>w o —w dw

with f(w) = weg(w), while in the term containing €;(w) we
use

et(w —o)t __ e—t(u) —w)t

lim = 2it. (71)

o' —>w o — w

After straightforward manipulations we obtain

M h &0 , 0
U,’(r) = 3 2CZTr dow a—a)[a)eR(w)]G,(r,r,a))
0

h o0
+1——Tr / dow’e; ()G (r,r,w). (72)
4722 0

The contribution to U, (r,t) from the noise polarization part
of Dis

U@ (r,1)

l(a)’—w)t

—Re— dw/ do’
a) —

x [0 (E(r o) - Ki(r,0)) — o(K(r,o0) - El(ro))]

l(a) —w)t 1

—Re— dw/ do’
W —w 41

/ 2
x[‘”c‘j / &' Gy(r.x ) (K (r.o)K] (¢ o))

0)0)2

/d3r’G* (r,r' ) {Ki(r, a))K (r a))):|. (73)

c?
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Using Eq. (66) with T = 0, and the same sort of manipulations
used to evaluate U e(l)(r), we obtain

U<2)(rz)——L ood 2 ()i[ Tr G g(r,r,w)]
e 1) = 8722 A ww €er(w P @ r(I', T,

h

o0
—t—/ dww361(a))TrG1(r,r,w). (74)
4m2c? J,

Thus the terms proportional to 7 in Egs. (72) and (74) cancel, as
discussed in I for the special case of a homogeneous medium,
and then

Vi) = o [ doo?|-Lwert@)Te G r.r)
r = 2/(; ww 8w[a)eR w)|Tr G,(r,r,w
- ez(w)i[wTr GR(r,r,w)]}. (75)
ow

Integrating by parts the integral involving the second term on
the right-hand side, we obtain

U.(r) = Im/ dow’ —[a)e(a))]Tr G(r,r,w)

h [o.¢]
+ — / dwo’e;(0)Tr Gr(r,r,w).  (76)
8w2c? J,
It follows similarly from Eq. (59) that

U, = Im/ dow® e()TrG(r,r,w). (77)
The total zero-point energy density of the dispersive and
dissipative dielectric medium is therefore

Ur) = Im/ dow {B—[we(w)] + e(w)}Tr G(r,r,w)

h oo
+ —/ da)a)ze,(a))Tr Ggr(r,r,w)
8mw2c? J,

_ " /Ood Z{i[ 1+ }T G(r,r)
= 87‘[262 m A ww P (O] € r r,r
+un(r) = u(r) + un(r), (78)

where u(r) is the energy density (37) obtained in Sec. II.

Two “additional” contributions to the energy density have
appeared naturally in the calculation of U (r) based on Poynt-
ing’s theorem. The first one is the energy — Ranst [Eq. (39)]
associated with the absorptive loss of field energy, which
is exactly canceled by the energy + Ryt picked up by the
reservoir oscillators, as already indicated in Egs. (72)—(75) in
Sec. I B.

The second additional contribution, given by uy(r), is
exactly the same as in Eq. (40):

h oo
uy(r) = m/ da)a)zel(r,a))Tr Gr(r,r,w)
0

1
:——(E K+K-E). (79)
28m
As in the discussion that led to Eq. (40), this shows that
u y(r) is the polarization energy acquired by the “noise” dipole
moments of the atoms as they interact with the electromagnetic
field.
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D. Homogeneous medium

When spatial dispersion is negligible, Eq. (78) is a general
expression for the zero-point energy density of a linear
dielectric medium, including the effects of the fluctuating
electric and magnetic fields, the material medium, and the
reservoir. We now show that this expression reduces to
the expected energy density in the limit of a homogeneous
medium.

The (retarded) Green dyadic for a homogeneous dielectric
medium is given by [31]

_ , 1 ezkmlr r'|
G,-j(r,r ,(,()) = <1 + EVV)W, (80)
where ki = e(w)w?/c?. Thus,
_ , 47
Gijrr,o) = 3k2 8118 (r—r)
+[8,»j —R;R;/R* — (8;; —3R:R;/R?)
o 1 i etk R 81
k2R*  k,R R’
where R = |[r —r'|. For R — 0,
_ , 477
Gij(r,r',w) = 3k2 8”8 r—r)
+ ?kma,»j v R3(5 —3R;R;/R?). (82)

m

Ignoring for the moment the terms that diverge for R — 0 (see
below), we put

Grij(r,r,0) = [2ng(w)w/3cls;;, ®3)
Grij(r,r,0) = —[2n;(w)w/3c]8;;
in Eq. (78) and obtain
h o0
u(r) = Py / da)w3{[2eR + weglng
0
—n,—(a)e,)—2n161}. (84)

ow

Evaluating the second term in curly brackets by partial
integration we obtain

L 9
) =>—~ /0 dow’ni(@)o—long@).  (85)

This is exactly the energy density derived in I for the special
case of a homogeneous dielectric medium.

A few other points regarding the model of a homogeneous
medium may be worth noting. First, the Green dyadic (81) for
a homogeneous dielectric leads via Eq. (62) to the (Huttner-
Barnett) expression (80) of I for the quantized (transverse)
electric (and magnetic) field in a homogeneous dielectric, as is
easily verified; these expressions reduce to the standard ones
in the limit of free space, as is shown by considering their
limiting forms as eg — 1,¢; — 0. Second, Eq. (83) and the
zero-temperature expectation value [cf. Eq. (82) of I]

2ha? ,
3 ng(w)d(w — ') (86)

(E(r,0) - El(r,0)) =
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imply
2

. ot , ho  — ,
(E(r,w) - E'(r,0")) = ;C_ZTI G;(r,r,w)s(w—w), (87)

consistent with Eq. (69).

The §-function term in Eqgs. (81) and (82) has its origin in
the divergence of R/R2 asR — 0,
1 V.V 1 4

k2t r—r| 3k

m

883 — ). (88)

Physically, this is a direct consequence of the continuum and
(spatial) local approximation and can be remedied by allowing
for spatial dispersion and/or the granular structure of matter
[32]. As remarked earlier, such a singularity is to be subtracted
from G;;. Its contribution to Eq. (1) is a force density whose
integral over all the space vanishes for bounded dielectric in
a vacuum, as expected. Also, the 1/R? divergence in Eq. (82)
can be remedied by replacing the point dipole to which it
corresponds with a dielectric sphere of radius R and then
allowing R — 0; the result is [33]

Gy w) = ——§,.8%(r — 1) (89)

3k2
for |r — r'| infinitesimally small. Again, as noted earlier, this
term is to be subtracted from G; ; and gives a vanishing
contribution to the force density (1).

Finally we note that throughout this paper we are working,
albeit formally, with the full (transverse plus longitudinal)
electric field and Green dyadic, as is required when the
permittivity can vary with r. If we consider, for example, the
spontaneous emission rate A of a guest atom in a homogeneous
dielectric, which is proportional to the imaginary part of G, we
find that, in addition to the familiar contribution equal to the
free-space emission rate times the real part of the refractive in-
dex at the transition frequency wy (and possibly also including
local field corrections), A has a contribution proportional to
Im(1/k%) = (¢?/o})er(wo)/1€(wo)|* [cf. Eq. (88)]. Following
the approach of Barnett et al. [33], this part of A, which is
attributable to the longitudinal part of the electric field, is
found to depend on an unspecified parameter R related to
the effective distance between the guest atom and the host
medium. Without modifying the continuum model to allow
for such a parameter, we would obtain no such contribution
to A. The same is true in I, where we considered only the
transverse component of the field, in line with the assumption
of a homogeneous, continuous medium made in that paper,
where there was no allowance for the finite distances between
atoms and the near-field interactions between atoms associated
with longitudinal fields.

E. Parallel plates

Equation (1) as such is not in general very useful for the
calculation of Casimir forces between arbitrarily shaped media
[34]. One exception is the force between two dielectric media
occupying the half-spaces z < 0 and z > d and separated by
a third dielectric [10,11]. In this case

€(r,w) = €1(w)0(—2) + e2(0)0(z — d)
+e(@)[0(z) — 0(z — d)], (90)
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where 6(z) is the unit step function. Then the integral over
space of the force density is simplified by the fact that Ve(r,w)
involves simple & functions in z, yielding

hA o hw
— 3 _ _ 5 2
F(d) = /d rf(r) = —zmlm/(; dow coth(ZkBT)
x{€3(w)G;(0%,0",0) — €1(0)G;;(07,07,w)
+ €(0)Gi(d",d"w) — e3(w)Gii(d™.d",w)}, (91)
where G;;(0%,0%,w) and G;;(d*,d*,w) stand for G;;(z —
0%,z — 0%,0) and G;;(z — d*,7 — d*,w), respectively.

The Green dyadic for this geometry can be evaluated without
difficulty [10,35], and its trace at coincidence can be written

as
. 2 2
l C d kH 2
Gii(z,z,0 24 k2R
ll( ) 27_[ 60261 / K1 {[ K ]
w? 2
+?61R;e}e ME<0),  (92)
Gii(z,z,w)
R / d’k
T 27 wles K3
2
% { K_’%[z r}mrémeZi/cgd _ r{meZikgz _ r;meZilq(dfz)]
tm
o’ Qlirad 2i Diks(d
C2 5 [2 te te K3 +rte ik3Z —I—rg’e iK3( 7z)]
te
k2
+Dt [2 rtm Em 2ik3d +rtm62mgz +rtm 2iK3(d— L)]}
m
0 <z<d), 93)
. 2 2
l C d kH 2
Gii(z,z,0 24 kR
ll( ) 2]{ 0)262 / P {[ Ky ]
w? .
+562R§}6W > d). (94)
where k; = /e;0?/c>—k7 (the @ dependence of ¢; is implicit

throughout), the Fresnel transverse electric (te) and transverse
magnetic (tm) reflection coefficients are given by

K3 — K;j €jK3 — K

rf=—=—=, ri"= e ©5)
K3 —Kj €jK3 —Kj
and we defined
P ks i (96)
1 1— rp gezmgd ’
2ikzd
b —}"2 + r] e
K o7
D —1— r{)rpeszd (P = te,tm). (98)

Substituting Egs. (92)-(94) into Eq. (91) we get, after
straightforward (if a bit long) manipulations,

F(d) = /d% f(r) = —iﬁlm/w docoth [
- T 2kpT

rPrP eZuc;d
f ke Y 12T (99)

p=te,tm
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which is just the force between two parallel half-spaces
separated by a dielectric [10].

IV. CASIMIR FORCE DENSITY FROM THE MAXWELL
STRESS TENSOR

The force on the material resulting from the Lorentz forces
acting on the particles constituting the medium can be obtained
from the Maxwell stress tensor [36]. We now show that this
force is equal to the Casimir force density (1).

Recall first the classical theory for the force density in
a dielectric medium in which there are no free charges
or currents. From the macroscopic Maxwell equations one

derives a force density f; = 9;7;;, where the stress tensor is

1
Tij: |:E5Dj+HiHj_E(E'D+H'H)55j:|. (100)

1
4
It follows that

1

fi = gl E))D; — E; (D)) (101)
In identifying f(r) as the force per unit volume on the medium
at the point r we are assuming conditions such that (3/9¢)(D x
H)/4m ¢ can be taken to be zero, since we are dealing with a
stationary equilibrium situation (see also [37]). We continue to
restrict ourselves here, as in I, to isotropic media, in which case
the Minkowski form of the stress tensor defined by Eq. (100) is
symmetric, consistent with angular momentum conservation.
In quantum theory we replace E; and D; in Eq. (101) by

operators, symmetrize, and take expectation values:
1

fi = —Rel[{(&:E))D;) —

= (E;@: D)1,

(102)
or
1 © o0 R .
fi(r) = gRe/; da)/; do'{{[0; E;(r,@)]D;(r,0"))
— (E;(r.o)[3; D;(r.0)])}. (103)

Since the electric vector

e(r,0)E(r,0) + K(r,o),

displacement D(r,w) =

(E;(r,0)D;(r',0)) = (', ) (E;(r,0)E; o)
+{(E;j(r,o)K;(r',0)). (104)

In the second term on the right-hand side we use Eq. (62),
while in the first term we use Eq. (69). Then

Re(E;(r,0)D;(r o))

2

= 2 Imle(t', )G ;;(r.F )]s — ), (105)
c

which leads us again to the force density (1):
filr) = —Im/ da)f do’ 11m{( [0; E j(r, a))]D (r',w))
— (E;(r",0)[8; Dj(r,0)])}

h [e9]
=1 dww?d;e(r,w)G ;;(r,r,w). 106
P m/o ww”0;e(r,w)G;(r,r,w) (106)
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V. CONCLUDING REMARKS

In Sec. II we considered a collection of stationary electri-
cally polarizable particles in free space and at zero temperature
and obtained formal expressions for the many-body van der
Waals interaction energies among these particles. The results
are equivalent to those obtained by various other methods,
but unlike most of the earlier work we accounted explicitly for
dissipation by coupling each particle to a reservoir of harmonic
oscillators rather than by invoking analytic properties of the
permittivity. Within the continuum approximation we obtained
expressions for the electromagnetic energy density and a
Casimir force density; as shown in the Appendix, these
expressions are easily generalized to the case of thermal
equilibrium. The force density obtained is in agreement with
that originally derived by Dzyaloshinskii et al. [10]. In Sec. I1I
we derived the formula (37) for the energy density starting
from the continuum approximation and Poynting’s theorem
in macroscopic quantum electrodynamics, and in Sec. IV
we derived the formula (1) for the force density using the
Minkowski form of the stress tensor.

Under the assumption of a continuous medium, and
ignoring single-particle self-energies, the expression (37) is
exact [38]. Similar expressions are well known in classical
electromagnetic theory [39] as approximations applicable for
frequencies at which absorption is negligible. The reason
our expression is exact is not, strictly speaking, due to our
quantum treatment of the field, but rather to the fact that
Fourier components of the zero-point field at different fre-
quencies are uncorrelated [8] (as they are at finite equilibrium
temperatures).

Under the (unrealistic) assumption that absorption can be
completely ignored, so that € is real, we would write

1
ur) = —

da){ i [we(r,w)] + e(r,w)}
8 0 Jw

x (E(r,0) - El(r,0))

n o0 o[ @
= —8712621111/0 dow {ﬁ[a)e(r,a})] + e(r,a))}

x Gji(r,r,w). (107)

Since both ¢ and G as functions of complex frequency are
analytic in the upper half of the complex frequency plane, we
can perform a Wick rotation and write

h o0 0
u(r) = ot /0 dsszig[&(r,is)] + e(r,ié)}
(108)

x Gji(r,r,i§),

where we have used the relation between (E(r,w) . ET(r,w))
and G(r,r,) for purely imaginary frequencies i£. In other
words, consistent with the remarks in the Introduction, we can
obtain the correct energy density from formula (107), which
assumes there is no absorption, by formally replacing €(r,w)
and G(r,r,w) by their (real) values €(r,i&) and G(r,r,i§).
Similarly we can formally interpret the energy density (37) as
an integral over zero-point energies (1/2)hv by writing it as

u(r) = /Dodvp(r,v)<lhv>,
0 2

(109)
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where

o) = #{;—v[ve(r,iv)] + e(r,iv)]}

x G (r,r',iv) (110)

is a local density of states [40].

ACKNOWLEDGMENTS

We thank G. Barton, L. S. Brown, S. Y. Buhmann, I. E.
Dzyaloshinskii, J.-J. Greffet, F. Intravaia, A. Narayanaswamy,
and T. G. Philbin for discussions relating to this work. We
acknowledge funding by DARPA/MTO’s Casimir Effect
Enhancement program under DOE/NNSA Contract No.
DE-AC52-06NA25396. This research was also partially
supported by Triangle de la Physique, under Contract No.
2010-037T-EIEM.

APPENDIX: GENERALIZATION TO FINITE
TEMPERATURE

It is an easy matter to generalize our approach and results
to finite equilibrium temperatures 7. In the approach of Sec. I
we replace (E(r) - Ef(r)) in Eq. (14) by (E(r) - Ef(r) + Ef(r) -
E(r)), since the quantized field E involves photon annihilation
operators and does not give zero when acting on a thermal
state. We similarly replace Eq. (15) by [19]

(Bo(r,0) - Bl(r,0) + El(r,0) - Byr,0")

h ho ,
= — coth ImTr Go(r,r,w)é(w — »'). (Al)
b4 ZkBT

Then formulas such as Egs. (17)—(19) and (37) are gener-
alized to finite temperature by simply inserting the factor
coth(hw/2kpT) in the integrations over w. Thus, for example,

the energy density (37) generalizes to
h 0 h
u(r) = ——ImTr / dww? coth @
8mw2c? 0 2](3 T

x [2e(r,w) + we'(r,w)]G(r,r,).

(A2)

The same arguments leading from the energy density to the
force density apply regardless of the temperature, so the
generalization of Eq. (1) is simply

f(r) hoy /ood 2 coth [ -\ Ver.m)
=————Im co e(r,
8m2c? 0 @w 2kgT @
(A3)

x Gji(r,r,w).

We can convert in the standard fashion the integral over the
real w axis to an integral over the imaginary w axis. Using the
fact that e(r,w) and G(r,r,w) are analytic in the upper half
of the complex frequency plane, and that coth(iw/2kgT) has
poles at w, = 2rikpT /h)n = i§, for all integers n, the result
is that the integration over w is replaced by a sum over n:

drkpT
A gﬂzsﬂ),

/oodwf(a))—> — (A4)
0

where f(w) denotes the integrand in Eq. (A3) and the prime on
the summation sign indicates that the n = 0 term is multiplied
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by 1/2. Then

ksT &
f(r) = _4262 ;wﬁcii(r,r,iwn)Ve(r,iwn), (A5)
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which is the result of Dzyaloshinskii et al. quoted earlier
[Eq. (49)]. The same finite-temperature results are easily
shown to emerge from the approach of Sec. III when
the temperature-dependent terms in the noise polarization
correlation functions (65) and (66) are retained.
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